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Strong Stability of Queueing
Systems and Networks: a
Survey and Perspectives

Boualem RABTA, Ouiza LEKADIR and Djamil AÏSSANI
Research Unit LaMOS (Modeling and Optimization of Systems), University of

Béjaïa, Algeria

The analysis of the stability of queueing models aims at determining the

conditions under which the mathematical model is a good representation of the real

system despite approximation and estimation errors. A system is stable if small

perturbations in its parameters generate at most a bounded deviation in its

characteristics. The strong stability method has been used for the study of the

sensitivity of diverse types of queues and queueing networks. In addition to the

qualitative affirmation of stability, quantitative estimates of the perturbation error

have been obtained in most cases. In this chapter, we review the application of the

strong stability method to queues and queueing networks and provide directions for

future research.

9.1. Introduction

Queueing models are useful for modeling and analysis of numerous systems such

as communication systems, computer networks as well as production and

manufacturing lines. The analysis of queueing models aims at evaluating a set of

performance measures such as the utilization of resources, throughput and response

time. However, real systems are usually very complicated and their representation by

Queueing Theory 1,
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260 Queueing Theory 1

mathematical models is performed only through approximations. Hence, the real

system is often replaced by another one, which is close to it in some sense but

simpler in structure and/or components. This is necessary in order to obtain a model

that is analytically tractable or can be solved by numerical methods. Moreover, the

parameters of the model as well as the underlying probability distributions are

estimated from empirical data by means of statistical methods. Usually, those

approximations are performed with care in order to insure that the constructed model

is sufficiently robust to resist the perturbations in its structure and parameters and that

it remains a reliable representation of the real system. It is therefore very important to

justify these approximations and estimate the resulting error.

In addition to the qualitative properties of the model, it is also important to have

an estimation of the deviation in the characteristics (output) resulting from the

perturbation of the parameters (input). Sensitivity analysis is a very important step in

validating mathematical models.

Different mathematical methods have been elaborated in the study of the

qualitative properties of stochastic systems, especially their stability. Here, we use

the term “stability” to designate the ability of the system to resist perturbations

(robustness, insensitivity). The first results were obtained by Rossberg (1965),

Gnedenko (1970), Franken (1970) and Kennedy (1972). Kalashnikov and

Tsitsiachvili (1972) proposed the method of test functions inspired by the classical

Liapunov method initially applied to investigate the stability of differential equations

(Kalashnikov and Tsitsiachvili 1972; Kalashnikov 1978). Stoyan (1977) investigated

continuity properties of queueing models based on the weak convergence theory (see

also Stoyan (1984)). Zolotariev (1975) and Rachev (1989) considered the stability

problem as a continuity problem, which appears when applying some metric spaces

in other spaces. Borovkov (1984) obtained theorems of ergodicity and stability with

minimal conditions using renewal theory. Cao (1998) presented an approach based

on Maclaurin series expansions of the stationary distribution of Markov chains to

study the effect of parameter perturbation (see also Heidergott and Hordijk (2003)).

Using operator-theoretic and probabilistic methods, Anisimov (1988) expressed the

bounds for general Markov chains in terms of ergodicity coefficients of the iterated

transition kernel, which are difficult to compute for infinite state spaces.

The strong stability method (Aïssani and Kartashov 1983a,b; Kartashov 1996)

can be used to investigate the stability of a Harris recurrent Markov chain in general

state space when the perturbation of its transition kernel is small with respect to a

certain norm. A Markov chain is said to be strongly stable when small perturbations

in the inputs (transition kernel) can lead to at most a bounded deviation of the outputs

(stationary measure). Under this condition, approximations and parameter estimation

errors result in a controlled deviation in the characteristics of the system in some

sense. In addition to the qualitative affirmation of the stability (robustness) of the

considered Markov chain, the strong stability method also allows the derivation of
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upper bounds on the deviation of the stationary characteristics resulting from the

perturbation (approximation errors).

Queueing systems are among the first and most studied stochastic systems in the

context of the strong stability theory. Many types of queues and queueing networks

have been analyzed and their stability established. In most cases, quantitative

estimates (perturbation bounds) are also obtained. This chapter focuses on the

applicability of the strong stability method to queueing systems, reviews previous

results and discusses future perspectives.

The remainder of this paper is organized as follows. In the first section, we

introduce the notations and the basic definitions and theorems of the strong stability

theory. Next, we review the application of the strong stability method to single

queues, queueing networks as well as the use of non-parametric density estimation

method in the study of those systems. The chapter will be finalized by a general

conclusion with some future perspectives.

9.2. Preliminary and notations

Let X = (Xt, t ≥ 0), a homogeneous Markov chain with values in a measurable

space (E, E) (where we assume that the σ-algebra E is countably generated), given

by a regular transition kernel P (x,A), x ∈ E, A ∈ E and having a unique invariant

measure π.

Denote by mE (mE+) the space of finite (nonnegative) measures on E , fE (fE+)

the space of bounded (nonnegative) measurable functions on E.

Consider in the space mE , the Banach space M = {μ ∈ mE : ‖μ‖ < ∞} with

norm ‖.‖ compatible with the structural order in mE , i.e.:

‖μ1‖ ≤ ‖μ1 + μ2‖ for μi ∈ M+, i = 1, 2.; [9.1]

‖μ1‖ ≤ ‖μ1 − μ2‖ for μi ∈ M+, i = 1, 2 and μ1 ⊥ μ2; [9.2]

|μ|(E) ≤ k‖μ‖ for μ ∈ M; [9.3]

where |μ| is the variation of the measure μ, k is a finite positive constant and

M+ = M∩ (mE+).

We introduce in mE , the special family of norms:

‖μ‖v =

∫
E

v(x)|μ|(dx), ∀μ ∈ mE , [9.4]
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where v is a measurable function bounded from below by a positive constant, (not

necessary finite) on E. Therefore, the induced norms on fE and M will have the

following forms:

‖P‖v = sup{‖μP‖v, ‖μ‖v ≤ 1} = sup
x∈E

(v(x))
−1

∫
E

|P (x, dy)|v(y), [9.5]

‖f‖v = sup{|μf |, ‖μ‖v ≤ 1} = sup
x∈E

(v(x))
−1 |f(x)|. [9.6]

We associate to every transition kernel P (x,A) in the space of bounded linear

operators, the linear mappings LP : mE → mE and L∗
P : fE → fE , the values of

which for μ ∈ mE and f ∈ fE are, respectively:

μP (A) = LP (μ)(A) =

∫
E

μ(dx)P (x,A), ∀A ∈ E ,

Pf(x) = L∗
P (f)(x) =

∫
E

P (x, dy)f(y), ∀x ∈ E,

and with every function f ∈ fE , we associate the linear functional f : μ → μf such

that:

μf =

∫
E

μ(dx)f(x).

For μ ∈ mE and f ∈ fE , f ◦ μ is the transition kernel having the form:

f(x)μ(A), x ∈ E, A ∈ E ,

where ◦ denotes the convolution between a measure and a function.

DEFINITION 9.1.– The Markov chain X verifying ‖P‖v < ∞ is strongly v−stable, if
every stochastic kernel Q in the neighborhood {Q : ‖Q− P‖v < ε} admits a unique
stationary measure ν and:

‖ν − π‖v −→ 0 when ‖Q− P‖v −→ 0.

The following result (see Aïssani and Kartashov (1983a)) gives sufficient

conditions for the strong v−stability of a Harris recurrent Markov chain.

THEOREM 9.1.– The Harris recurrent Markov chain X verifying ‖P‖v < ∞ is

strongly v-stable, if the following conditions are satisfied:
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1) ∃α ∈ M+, ∃h ∈ fE+ such that : πh > 0, αI = 1, αh > 0;

2) T = P − h ◦ α is a non-negative kernel;

3) ∃ ρ < 1 such that, Tv(x) ≤ ρ v(x), ∀x ∈ E;

where I is the function identically equal to 1.

One important feature of the strong stability method is the possibility of obtaining

quantitative estimates. The following theorem (see Kartashov (1981, 1986c)) allows

us to obtain an upper bound to the norm of the deviation of the stationary distribution

of the strongly stable Markov chain X .

THEOREM 9.2.– Under the conditions of theorem 9.1 and for Δ = (Q−P ) verifying

the condition ‖Δ‖v < C−1(1− ρ), we have:

‖ν − π‖v ≤ ‖Δ‖v‖π‖vC (1− ρ− C‖Δ‖v)−1
, [9.7]

where

C = 1 + ‖I‖v‖π‖v and ‖π‖v ≤ (αv)(1− ρ)−1(πh).

Proofs of the above theorems, further conditions for the strong stability of

homogeneous Markov chains and perturbation bounds as well as extensive results on

the strong stability theory can be found in various studies (Aïssani 1990; Aïssani and

Kartashov 1983a; Kartashov 1985, 1986a,b,c, 1996; Rabta and Aïssani 2008;

Mouhoubi and Aïssani 2014; Rabta and Aïssani 2018).

Finally, we denote by Z the set of integer numbers and by R the set of real

numbers. A+ denotes the non-negative part of the set A and A
∗ = A/{0}. Note that

the notations introduced in each section are independent from those of the rest of the

paper and might be redefined in another section.

9.3. Strong stability of queueing systems

Queueing models might have a large number of parameters that are subject to

perturbations given that in practice those are unknown and must be approximated

and/or fitted from empirical data. Obviously, the interarrival time and service

time distributions are the first candidates. We distinguish the following kinds of

perturbations.

– Parameter perturbations: only perturbations to individual parameters of the

system are considered. For instance, in an M/M/1 queueing system, arrivals
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are Poisson distributed but the arrival rate has to be estimated. Considering

the perturbation of the arrival rate while using a distribution of the same form

(exponential) for the interarrival times, the perturbed system is also of type M/M/1.

– Distributional perturbations: here, the distribution of a constituent random

variable is unknown and/or approximated by another distribution of a given (but

different) form. In an M/G/1 queueing system, the general distribution of service

times is unknown. Under certain conditions (distance), it might be replaced by an

exponential distribution with the same mean. The resultant system is of type M/M/1.

– Non-parametric perturbations: we put in this category the applications of the

strong stability method where the unknown distribution is fitted from data using

non-parametric statistical methods such as kernel density estimation.

In all of the above kinds of perturbations, the same question is asked. The

estimated parameters and/or distributions are imprecise, and hence, the mathematical

representation (model) differs from the original system. We need to make sure that

the estimation errors will not greatly impact the performance of our model and

estimate the deviation in the performance measures between the original system and

its mathematical representation, namely, the perturbation errors.

9.3.1. M/M/1 queue

The M/M/1 queueing system is the simplest queueing model. Customers arrive

according to a Poisson process with rate λ and wait for service in front of a single

server. We denote by Eλ the exponential distribution of the interarrival times. The

queue capacity is infinite, the service durations follow an exponential distribution Eμ

with rate μ and the service discipline is first-in-first-out (FIFO). The performance

measures of this model are calculated in a closed form. In this section, we clarify the

conditions under which the M/M/1 queueing model can be used as a good

approximation in the case where the interarrival time distribution or the service

distribution is different (but sufficiently close in some sense) from the exponential

distribution.

9.3.1.1. Perturbation of the interarrival time distribution
Consider the queueing system M/M/1 (FIFO,∞) as described above. Let Xn

be the number of customers in the queue just before the nth arrival. X = {Xn :
n ≥ 0} is a homogeneous Markov chain with states in Z

+ and transition matrix

P = (Pij)ij≥0 where

Pij =

⎧⎪⎪⎨⎪⎪⎩
di+1−j =

λμi+1−j

(λ+μ)i+2−j if 1 ≤ j ≤ i+ 1,

1−∑i
k=0 dk =

(
μ

μ+λ

)i

if j = 0,

0 otherwise.

[9.8]
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Provided that the utilization λ
μ < 1, the Markov chain X admits a unique stationary

vector π = (πk)k≥0. Consider, on the other hand, a GI/M/1(FIFO, ∞) queueing

system where interarrival times are independent and identically distributed according

to a general distribution H . Service times are distributed according to an exponential

distribution Eμ. Let X∗
n be the number of customers in the queue just before the nth

arrival. It is very easy to show that X∗ = {X∗
n : n ≥ 0} is a homogeneous Markov

chain with states in Z
+ and a transition matrix P ∗ = (P ∗

ij)i,j≥0 where

P ∗
ij =

⎧⎪⎨⎪⎩
d∗i+1−j =

∫∞
0

1
(i+1−j)!e

−μt (μt)
i+1−j

dH (t) if 1 ≤ j ≤ i+ 1,

1−∑i
k=0 d

∗
k if j = 0,

0 otherwise.

[9.9]

Again, a unique stationary vector π∗ = (π∗
k)k≥0 of the Markov chain X∗ exists

provided that the utilization is lower than 1. In order for the first system to be a good

approximation of the latter, the interarrival time distributions of the two systems must

be sufficiently close to each other. We measure the distance between the two

distributions with the following metric:

w = w(H,Eλ) =

∫ ∞

0

|H − Eλ| (dt) , [9.10]

where |a| is the variation of measure a.

THEOREM 9.3.– Suppose that the utilization of the M/M/1 queue λ
μ < 1. Then, for

each β such that 1 < β < μ
λ , the Markov chain X is stongly v-stable (with respect to

the perturbation of the interarrival time distribution) with v(k) = βk.

To prove the strong v-stability of the Markov chain X with respect to the function

v(k) = βk, β > 1, we check the conditions of theorem 9.1. Suppose that λ/μ < 1
and let

hi =

(
μ

λ+ μ

)i

for i ≥ 0 and αj =

{
0 if j ≥ 1,
1 if j = 0.

The calculation is straightforward. In particular,

ρ =
βλ

μ− μ
β + λ

< 1 for 1 < β < μ/λ. [9.11]

The following result provides an estimation of the distance (in the norm ‖.‖v)

between the transition matrices of the two Markov chains. This could tell us how

close the real system (G/M/1) is to its mathematical representation (M/M/1).
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THEOREM 9.4.– For each β such that 1 < β < μ/λ, we have

‖P ∗ − P‖v ≤ (1 + β)w,

where w is given by [9.10].

Now, we are ready to estimate the deviation of stationary distribution that results

from the considered perturbation of the interarrival time distribution. The following

theorem gives an upper bound to the difference between the stationary distributions π
and π∗ with respect to the norm ‖.‖v .

THEOREM 9.5.– Under the conditions of theorem 9.3 and for each distribution H
satisfying

w <
(1− ρ) (μ− λβ)

(1 + β) (2μ− λ (1 + β)) ,

we have

‖π∗ − π‖v ≤ (1 + β) (2μ− λ (1 + β)) (μ− λ)w
(β−1)(μ−λβ)3

(β−1)μ+λβ − (2μ− λ (1 + β)) (1 + β) (μ− λβ)w
,

where ρ is given by [9.11].

The proof of this result is based on theorem 9.2. For detailed calculations, see

Bouallouche and Aïssani (2006a).

9.3.1.2. Perturbation of the service time distribution

Consider again the queueing system of type M/M/1 (FIFO,∞) described

above. This time, we consider the random variable Xn representing the number of

customers in the queue just after the nth departure. X = {Xn : n ≥ 1} is a

homogeneous Markov chain with states in Z
+ and transition matrix P = (Pij)ij≥0

where

Pij =

⎧⎨⎩
fj if i = 0
fj−i+1 if 1 ≤ i ≤ j + 1
0 otherwise,

[9.12]

where

fk =
μλk

(λ+ μ)
k+1

.
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Under the usual utilization condition λ
μ < 1, X is irreducible and aperiodic.

Therefore, it admits a unique stationary vector π.

Consider the M/G/1 (FIFO, ∞) queueing system obtained by replacing the

service time distribution in the previous model by a general distribution F with the

same mean. Let X∗
n be the number of customers in the queue in this new model just

after the nth departure. X∗ = {X∗
n : n ≥ 1} is a homogeneous Markov chain with

states in Z
+ and transition matrix P ∗ = (P ∗

ij)ij≥0 where

P ∗
ij =

⎧⎨⎩
f∗
j if i = 0,
f∗
j−i+1 if 1 ≤ i ≤ j + 1,
0 otherwise.

[9.13]

with

f∗
k =

∫ ∞

0

e−λt (λt)
k

k!
dF (t) .

Suppose that the distribution of service durations in the M/G/1 system is close

to the exponential service time distribution of the M/M/1 system. We measure the

distance between the two distributions by

w = w(F,Eμ) =

∫ ∞

0

|F − Eμ| (dt) . [9.14]

First, we prove the following result.

THEOREM 9.6.– Suppose that the utilization of the M/M/1 system λ/μ < 1. Then,

for every β such that 1 < β < μ/λ, the Markov chain X is strongly v-stable for a test

function v(k) = βk with respect to the perturbation of the service time distribution.

To prove this result, we choose

h (i) = δi0 =

{
1 if i = 0,
0 if i > 0,

and

αj = fj .
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Then, we check the conditions of theorem 9.1. In particular, it emerges that if

β < μ/λ, then

ρ =
μ

β (λ+ μ− βλ)
< 1. [9.15]

This intermediary result is necessary to prove the next theorems.

LEMMA 9.1.– Under the conditions∫ ∞

0

t2 |F − Eμ| (dt) < +∞.

and ∫ ∞

0

t |F − Eμ| (dt) < w/λ,

where w is given by [9.14], there exists β > 1 such that∫ ∞

0

eλ(β−1)t |F − Eμ| (dt) < βw.

The distance between the transition matrices of the two systems is estimated by

the following result.

THEOREM 9.7.– Under the conditions of lemma 9.1, we have

‖P − P ∗‖v ≤ βow,

with v(k) = βk and

βo = max

(
β : 1 < β <

μ

λ
and

∫ ∞

0

eλ(β−1)t |F − Eμ| (dt) < βw

)
. [9.16]

Now, we apply theorem 9.2 to estimate the deviation of the stationary vector with

respect to the perturbation of the service time distribution.

THEOREM 9.8.– Under the conditions of theorem 9.6 and lemma 9.1, for every β such

that 1 < β < μ/λ and if

w ≤ (1− ρ)

Cβo
,
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we have

‖π − π∗‖v ≤ βowCC
′
(1− ρ− βowC)

−1
= e(β).

with v(k) = βk, βo is given by [9.16] and ρ is given by [9.15],

C
′
=

μ− λ

μ− λβ
and C =

2μ− λ(1 + β)

μ− λβ
.

Additionally to the stationary probabilities, the deviation of the other

performance measures can be obtained. For example, let Ns (respectively, N∗
s ) be the

average number of customers in the system, Nq (respectively, N∗
q ) be the average

number of customers in the queue and Ts (respectively, T ∗
s ) be the average response

time while Tq (respectively, T ∗
q ) is the average waiting time in the M/M/1

(respectively, M/G/1) system.

THEOREM 9.9.– Under the same conditions as theorem 9.8, we have the inequalities:

|Ns −N∗
s | =

∣∣Nq −N∗
q

∣∣ < e(β)/ ln(β), [9.17]

|Ts − T ∗
s | =

∣∣Tq − T ∗
q

∣∣ < e(β)/(λ ln(β)), [9.18]

with e(β) = βowCC
′
(1− ρ− βowC)

−1
.

The detailed proofs of the results of this section can be found in Bouallouche and

Aïssani (2006b).

9.3.2. PH/M/1 and M/PH/1 queues

In the previous section, the interarrival time distribution (respectively, the service

time distribution) is approximated by an exponential one having the same mean. This

is a rather strict condition because in practice not many distributions can be

approximated by the exponential distribution at an acceptable precision level. It

would be very helpful if we could find a family of distributions that can approximate

a large set of general distributions with a good level of precision and still have

properties to allow analytical solutions of the underlying queueing model. This is

precisely what the family of phase type (PH) distributions can provide us. Many PH

queueing problems can be analytically solved using matrix–geometric

techniques (Latouche and Ramaswami 1999). Additionally, the set of PH

distributions is dense in the set of positive distributions allowing one (in theory) to

approximate any positive distribution by a PH distribution at any desired precision

level (Asmussen 2003).
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In Djabali et al. (2018), the M/PH/1 queueing model is used to represent an

M/G/1 system by approximating the general service time distribution of the latter

by a PH distribution. This is achieved by matching the first two moments of both

distributions. The matched PH distribution is chosen among the family of

hyperexponential or hypoexponential distributions depending on the value of

variability coefficient of the original distribution. The confirmation of the strong

stability of the underlying Markov chain as well as quantitative estimates of the

perturbation error are obtained in each case. Similar results (Djabali et al. 2015) exist

for the PH/M/1 queue when perturbing the interarrival time distribution.

9.3.3. G/M/1 and M/G/1 queues

This section is concerned with the perturbation of the service time (respectively,

interarrival time) distribution in a G/M/1 (respectively, M/G/1) queueing system.

The exponential distribution is replaced by a general distribution with the same mean

and the result of this perturbation is a G/G/1 queueing model. The conditions of the

strong stability of the underlying Markov chain are clarified in each case and upper

bounds to the deviation of the stationary vectors are obtained.

9.3.3.1. Strong stability in the G/M/1 queueing system
Consider a G/G/1 queueing system with a general service times distribution G

and a general interarrival times probability distribution F . The following notations

are used: θn (the arrival time of the nth demand), ωn (the departure time of the nth
customer), γn (the time interval from θn to the departure of the next customer) and

Vn = V (θn − 0) (the number of customers found in the system immediately prior to

θn).

Let us denote by νθn = min{m > 0, ωm ≥ θn}. Then, γn = ωνθn
− θn.

Define recursively the following sequence,{
T0 = ωνθn

− (θn + γn) = 0,

Tk = Tk−1 + ωνθn+k ,∀k > 0.
[9.19]

The sequence {Tk}k∈Z+ describes the departure process after θn.

Let us also consider a G/M/1 system with exponentially distributed service times

with parameter μ and with the same distribution of the interarrival times as the G/G/1
one. We introduce the corresponding following notation: θ̄n, ω̄n, γ̄n and V̄n = V̄ (θ̄n−
0) defined as above. We also define the process {T̄n}n∈N as the sequence {Tn}.

In what follows, when no domain of integration is indicated, an integral is extended

over R+.
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LEMMA 9.2.– The sequence Xn = (Vn, γn) forms a homogeneous Markov chain

with state space Z
+ × R

+ and transition operator Q = (Qij)i,j≥0 defined by

Qij(x, dy) = P (Vn+1 = j, γn+1 ∈ dy/Vn = i, γn = x),

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
qi−j(x, dy) for 1 ≤ j ≤ i, i ≥ 1,∑

k≥i qk(x, dy) for j = 0, i ≥ 0,

p(x, dy) for j = i+ 1, i ≥ 0,

0 for j > i+ 1, i ≥ 0.

where{
qk(x, dy) =

∫∞
x

P (Tk ≤ u− x < Tk+1, Tk+1 − (u− x) ∈ dy)dF (u),

p(x, dy) =
∫ x

0
P (x− u ∈ dy)dF (u).

[9.20]

LEMMA 9.3.– The sequence X̄n = (V̄n, γ̄n) forms a homogeneous Markov chain

with state space Z
+ × R

+ and transition operator Q̄ = (Q̄ij)i,j≥0 having the same

form as Q (Lemma 9.2), where

q̄k(x) =

∫ ∞

x

e−μ(u−x) [μ(u− x)]k

k!
dF (u). [9.21]

REMARK 9.1.– The assumption τ̄μ > 1, where τ̄ is a mean time between arrivals in

the G/M/1 queueing system, implies the existence of a stationary distribution π̄ for

the embedded Markov chain X̄ . This distribution has the following form:

π̄({k}, A) = π̄k(A) = pkEμ(A), ∀ {k} ⊂ Z
+ and A ⊂ R

+, [9.22]

where pk = limn→∞ P (V̄n = k) is given by the following relation:

pk = (1− σ)σk, k = 0, 1, 2, . . . [9.23]

σ is the unique solution of the equation

σ = F ∗(μ− μσ) =

∫ ∞

0

e−(μ−μσ)xdF (x), [9.24]

F ∗ is the Laplace transform of the probability density function of the demands’

inter-arrival times. We can show that 0 < σ < 1 (Kleinrock 1975).
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Otherwise, note that

lim
t→∞P (X(t) = k) =

1

τ̄μ
pk−1, k = 1, 2, . . . and lim

t→∞P (X(t) = 0) = 1− 1

τ̄μ
,

[9.25]

where X(t) represents the size of the G/M/1 system at time t.

The formulas [9.23] and [9.25] permit us to compute the stationary distribution of

the queue length in a G/M/1 system. Unfortunately, for the G/G/1 system, these

exact formulas are not known. So, if we suppose that the G/G/1 system is close to

the G/M/1 system, then we can use the formulas [9.23] and [9.25] to approximate

the G/G/1 system characteristics with prior estimation of the corresponding

approximation error.

Suppose that the service time distribution of the G/G/1 system is close to the

exponential one with parameter μ. This proximity is characterized by the distance of

variation,

W ∗ = W ∗(G,Eμ) =

∫
eδt|G− Eμ|(dt) , where δ > 0. [9.26]

Let also consider the following deviation:

W0 = W0(G,Eμ) =

∫
|G− Eμ|(dt). [9.27]

We apply theorem 9.1 to the imbedded Markov chain X̄ . Consider the test function

v : Z+ × R
+ → R

+

(k, x) �→ v(k, x) = βkeδx
[9.28]

where 1 < β < 1/σ and 0 < δ = μ− μ
β < μ and σ is given by relation [9.24].

Let α be a measure defined as follows, for {j} × dy ∈ Eμ, we have,

α({j}, dy) = αj(dy) =

{
Eμ(dy) for j = 0,

0 for j 	= 0.
[9.29]
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And the measurable function

h : Z+ × R
+ → R

(i, x) �→ hi(x) = h(i, x) =
∑

k≥i q̄k(x)
[9.30]

where q̄k(x) is defined by the relation [9.21].

Now, we can state the following result.

THEOREM 9.10.– Suppose that the geometric ergodicity condition μτ̄ > 1 holds.

Then, ∀β ∈ R
+ such that, 1 < β < 1

σ , the Markov chain X̄ is strongly v-stable for a

function v(k, x) = βkeδx where, 0 < δ = μ− μ
β < μ.

To prove this result, we check that all the conditions of theorem 9.1 are satisfied

(Benaouicha and Aïssani 2005). In particular,

ρ = βF ∗(μ− μ

β
) < 1.

The following result gives us the quantitative estimation of the deviation of the

norm of transition operator in the G/M/1 system, after perturbation of the service

time distribution. The proof is based on a series of lemmas demonstrated in

Benaouicha and Aïssani (2005).

THEOREM 9.11.– Let Q and Q̄ be the transition kernels of the Markov chains X and

X̄ , respectively. Suppose that, for each β such that 1 < β < 1/σ, the following

conditions hold:

1) G∗ =
∫
eδtG(dt) < +∞;

2) ∃a > 0 such that
∫
eaudF (u) = N < +∞;

3) W0 =
∫ |G− Eμ|(dt) < a

a+μ ;

4) the geometric ergodicity condition μτ̄ > 1.

Then, the following inequality holds:

‖Q− Q̄‖v ≤ W ∗(1 + μτ̄) +W0G
∗N + μM

1− C0
,

where C0 = W0 +
μ

a+μ < 1 and M =
∫
ueaudF (u) < +∞.

The upper bound on the norm of the deviation of the stationary measure of the

Markov chain X̄ is given by the following theorem.
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THEOREM 9.12.– Let π and π̄ be the stationary measures of X and X̄ , respectively.

If

W ∗ = W ∗(G,Eμ) <
1− ρ

2C(1 + μτ̄ + C1)
,

and if

W0 <
a

a+ μ
,

then the following inequality holds:

‖π − π̄‖v ≤ 2[(1 + μτ̄)W ∗ + C1W0]
C(C − 1)

1− ρ
,

where

C = 1 + ‖π̄‖v =
1 + β(1− 2σ)

1− βσ
, C1 =

N + μM

1− C0
G∗. [9.31]

The proof of this theorem is based on theorem 9.2 and uses a series of

intermediary results. Further details can be found in previous studies (Aïssani 1982,

1987a,b; Benaouicha and Aïssani 2005).

9.3.3.2. Strong stability of the M/G/1 queue

Consider a G/G/1 (FIFO,∞) queueing model. We denote by τ ′n the interarrival

time between the arrival dates of the (n− 1)th and the nth customers. The sequence

of independent and identically distributed service times is denoted by {ξn}. Let θ′n =
τ ′1 + · · · + τ ′n be the arrival moment of the (n + 1)th customer with θ′0 = 0, and

consider the distributions G(t) = P (τ ′n < t) and F (t) = P (ξn < t) with m = Eξn.

Let qn be the number of customers in the system at the end of service of the nth
customer, γn the (residual) time until the next arrival. The sequence Xn = (qn, γn) is

therefore a homogeneous Markov chain with states in Z
+×R

+ and a transition kernel

Qf(n, x) = E(f(n− 1, x− ξ1), ξ1 < x) +

+
∞∑
k=1

E(f(n− 1 + k, θ′k + x− ξ1), θ′k−1 ≤ ξ1 − x < θ′k), [9.32]

where n > 0 and Qf(n, x) = EQf(1, τ ′1). Q can be obtained from the distributions

G and F .
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On the other hand, consider a M/G/1 (FIFO,∞) queueing model with (i.i.d)

exponential interarrival times {θn}n≥1, θ0 = 0 of mean 1/λ. The service time

distribution is F . Let P be the transition kernel of the Markov chain {Xn} in the

M/G/1 system.

In what follows, we assume that the following conditions are satisfied:

λ E ξ1 < 1 , E exp (aξ1) < +∞, [9.33]

for a certain a > 0.

Suppose that the interarrival time distribution G in the G/G/1 system is close to

the exponential interarrival time distribution Eλ of the M/G/1 model. The distance

between the two distributions is measured by

w(G,Eλ) =

∫
exp(ct)|G− Eλ|(dt), [9.34]

where 0 < c < λ is a fixed parameter.

Consider the measurable test function v(k, x) on Z
+ × R

+ defined by

v(k, x) = βk exp (εx),

and the corresponding v−norm ‖.‖βε.

It is easy to prove that ‖P‖βε < ∞ under the condition λ/μ < 1 and for every

0 < ε < λ and 1 < β < 1 + aλ−1. Additionally, we have the following result:

LEMMA 9.4.– Suppose that the condition λ/μ < 1 is satisfied and let 0 < c < λ be

a fixed constant. Then, there exist β1 = β1(λ, c, F ) > 1 and L1(β) < ∞ such that

‖Q − P‖βc ≤ L1(β)w(G,Eλ) for every 1 < β < β1 and every distribution G such

that w(G,Eλ) is sufficiently small.

Let v(n, x) = βn(exp (cx) + bexp(−δx)). We show that the Markov chain X is

strongly stable with respect to the norm ‖.‖v . By the fact that b−1‖T‖βc ≤ ‖T‖v ≤
(1 + b)‖T‖βc, the chain Xn is strongly stable with respect to the norm ‖.‖βc.

Let us check the conditions of the strong stability of the Markov chain X .

– it is easy to check that ‖P‖v < ∞;

– define the measure α and the measurable function h on I × R+ as follows:

h(n, x) = 0 for n > 0, h(0, x) = 1,

α({n} ×A) = P (θn ≤ ξ1 < θn+1, θn+1 − ξ1 ∈ A).
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We may easily show that for the operator T = P − hoα, Tf(n, x) = Pf(n, x)
for n > 0 and Tf(0, x) = 0. Clearly, T is non-negative.

Observe that for n > 0 and v(k, x) = βk exp (−δx),

Tv(n, x) = βn−1E(exp (δξ1 − δx), ξ1 < x) +
∑
k≥1

βn−1+k ×

×E(exp(−δθk − δx+ δξ1), θk−1 ≤ ξ1 − x < θk) = βn−1exp(−δx)×
×E(exp(δξ1 − δx), ξ1 < x) + λ(λ+ δ)−1βnE(exp(λ(β − 1)(ξ1 − x), (ξ1 ≥ x).

[9.35]

For δ = λ(β−1), we obtain Tv(n, x) = ρ0v(n, x), where ρ0 = β−1E exp(λ(β−
1)ξ1). Given that λ/μ < 1, it is easy to establish that ρ0 < 1 for β < 1 if sufficiently

small.

By choosing β and setting δ = λ(β − 1) in the expression of v(n, x), we obtain

for n > 0

Tv(n, x) ≤ (bρ0 + λ(λ− c)−1β) βn exp (−δx) + βn−1exp(cx) ≤ ρV (n, x),

where ρ = ρ0 + b−1λ(λ− C)−1β. In addition, Tv(0, x) = 0 < ρv(0, x).

It is sufficient to choose ρ < 1. This is possible because ρ0 < 1 and the constant b
can be taken sufficiently large.

9.3.4. Other queues

In the same way, a multitude of queueing systems have been studied. Hence, strong

stability results and perturbation bounds were also obtained for the following queueing

systems:

– group arrival queues: perturbation of the distribution of the size of the group

(Boukir et al. 2009);

– retrial queues: perturbation of the retrial rate (Berdjoudj and Aïssani 2003);

– multiple server M/M/m queue: perturbation of the interarrival time distribution

(Issaadi et al. 2016);

– queues with unreliable server: perturbation of failure rate (Abbas and Aïssani

2010a,c);

Copyright Iste 2021 / File for personal use of Djamil Aïssani only



Strong Stability of Queueing Systems and Networks: a Survey and Perspectives 277

– queues with server vacation: perturbation of vacation rate (Rahmoune and

Aïssani 2008, 2014);

– GI/M/∞ queue: perturbation of the size of the system (Aïssani 1992a,b;

Bareche et al. 2016);

– M2/G2/1 queue with priority: perturbation of the rate of priority arrivals

(Aïssani 1991; Bouallouche and Aïssani 2008; Hamadouche and Aïssani 2011);

– GI/M/1 queue with negative customers: perturbation of the negative arrival

rate (Abbas and Aïssani 2010b).

9.3.5. Queueing networks

The application of the strong stability method to queueing networks poses

numerous challenges. Except from Jackson networks, the performance measures

cannot be obtained in closed form. The approximation of general queueing networks

by Jackson networks also poses problems. First, the dimension of the underlying

Markov chain might be high. Additionally, the strong stability method supposes that

the perturbed process is also Markovian. The interconnection of the network nodes

and the complex dynamics of such systems make it very difficult to maintain the

Markov property or to define an embedded Markov chain in the perturbed system.

9.3.5.1. Jackson networks with two tandem stations

Consider the following Jackson network with two tandem queues [M/M/1 →
M/M/1]. Customers arrive at the first station according to a Poisson process with

rate λ. Denote by Eλ the exponential distribution of the interarrival times. Service

durations follow an exponential distribution with rate μ in the first station and an

exponential distribution with rate μ1 in the second one. The performance measures

of this model can be calculated in the closed form by exploiting the product form

property (Jackson 1957). In this section, we clarify the conditions under which this

type of queueing network can be used as a good approximation in the case where the

service distribution in the first station is different (but sufficiently close in some sense)

from the exponential distribution.

The state of the tandem network above is completely described by the Markovian

bidimensional process V (t) = (X(t), Y (t)), where X(t) is the number of customers

in the first station at time t, and Y (t) is the number of customers in the second station

at the same time t.

Denote by d
+

n the moment just after the departure of the nth customer from the

first station. Then, the embedded sequence (V n)n≥0 of random variables where V n =
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V (d
+

n ), V 0 = 0 is a Markov chain. Under the condition λ ≤ min(μ1, μ), the transition

probabilities of the Markov chain V n are given by:

Qij(k, l) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P jqkl, if i = 0, j ≥ 0, 1 ≤ l ≤ k + 1, k ≥ 0,

P jqk0, if i = 0, j ≥ 0, l = 0, k ≥ 0,

P j−i+1qkl, if 1 ≤ i ≤ j + 1, j ≥ 0, 1 ≤ l ≤ k + 1, k ≥ 0,

P j−i+1qk0, if 1 ≤ i ≤ j + 1, j ≥ 0, l = 0, k ≥ 0,

0, otherwise

[9.36]

where:

P r =

∫ ∞

0

exp (−λx)
(λx)r

r!
dEμ1(x), ∀r ∈ N,

qkl =

∫ ∞

0

exp (−μx)
(μx)k+1−l

(k + 1− l)!
dEλ(x),

qko = 1−
k+1∑
l=1

qkl.

On the other hand, consider the two stations tandem network

[M/G/1 → ·/M/1]. Arrivals to the first station are Poisson distributed with the

same rate λ as before while the service times distribution H is general. Consequently,

the arrival process to the second station is not Poissonian anymore. Denote by F the

distribution of interarrival times to this station. Service times at the second station are

exponentially distributed having common distribution Eμ with rate μ. Let

V (t) = (X(t), Y (t)) be the two-dimensional process, where X(t) is the number of

customers in the first station at time t, Y (t) is the number of customers in the second

station at time t. V (t) completely describes the state of the considered network

[M/G/1 → ./M/1]. However, V (t) = (X(t), Y (t)) is not a Markovian process.

Denote by d+n the moment just after the departure of the nth customer from the first

station. Then, the sequence of random variables Vn = (Xn, Y n) at these times is an

embedded Markov chain that describes the state of the network [M/G/1 → ·/M/1]
at those specific dates. Under the condition λ < min(μ1, μ2) the transition

probabilities of the chain Vn write:

Qij(k, l) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Pjqkl, if i = 0, j ≥ 0, 1 ≤ l ≤ k + 1, k ≥ 0,

Pjqk0, if i = 0, j ≥ 0, l = 0, k ≥ 0,

Pj−i+1qkl, if 1 ≤ i ≤ j + 1, j ≥ 0, 1 ≤ l ≤ k + 1, k ≥ 0,

Pj−i+1qk0, if 1 ≤ i ≤ j + 1, j ≥ 0, l = 0, k ≥ 0,

0, otherwise

[9.37]
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where

Pr =

∫ ∞

0

exp (−λx)
(λx)r

r!
dH(x), ∀r ∈ N,

qkl =

∫ ∞

0

exp (−μx)
(μx)k+1−l

(k + 1− l)!
dEλ(x),

qko = 1−
k+1∑
l=1

qkl.

Let α be the measure defined as follows:

α({i}, {j}) =
{
Piqkj if 0 ≤ l ≤ k + 1,

0 otherwise.
[9.38]

Consider as well the measurable function h defined by:

h(i, k) = hi(k) = 1{i=0}. [9.39]

Using them in theorem 9.1, the following result can be proved.

THEOREM 9.13.– Under the condition λ < min(μ1, μ), the Markov chain

{Vn}n≥0 = {Xn, Yn}n≥0 is strongly v-stable with respect to the test function

v(i, j) = γiβj , for every γ, β such that

1 < γ <
μ1

λ
, and1 < β < γ

(λ+ μ1 − γλ

μ1

)
.

9.3.5.2. Tandem queues with constant retrials

Consider the tandem queueing network [M/G/1 → ./G/1/1] with blocking

after service, consisting of a sequence of two service stations without intermediate

queue. Customers arrive to the first station according to a Poisson process with

intensity λ. Each customer receives service at station 1 and then proceeds to station 2

for an additional service. Since there is no intermediate waiting room, a customer

whose service in the station 1 is completed cannot proceed to the second station if the

latter is busy. Instead, the customer remains at station 1 that is blocked until station 2

becomes empty. The arriving customer who finds station 1 busy or blocked behaves

like a retrial customer, i.e., he does not join a queue but instead he is placed in a

hypothetical retrial queue (orbit) of infinite capacity and retries for service under the

constant retrial policy. According to this policy, the parameter of the exponential time
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of each customer in the retrial group is μ
n , where n is the size of the retrial group.

Thus, the total intensity is μ. If the server of station 1 is free at the time of an attempt,

the customer at the head of the retrial group receives service immediately. Otherwise,

they repeat their demand later.

Service times at stations 1 and 2 are independent and arbitrarily distributed random

variables with probability density functions bi(x), distribution functions Bi(x) and

finite mean values 1/μi, for i = 1, 2, respectively.

Let X(t) represent the number of customers in the orbit at time t, and for l = 1, 2:

ξl(t) =

⎧⎨⎩
0 if the lth server is idle at time t,
1 if the lth server is working at time t,
2 if the lth server is blocked at time t.

The considered model is completely described by the regenerative process:

V (t) =
(
X(t), ξ1(t), ξ2(t)

)
.

However, this process is not Markovian. We denote by dn, n ∈ N, the instant of

the nth departure from station 1. We assume, without loss of generality, that d0 = 0,

and we note that:

Vn = V (dn + 0) =
(
X(dn + 0), ξ1(dn + 0), ξ2(dn + 0)

)
= (Xn, 0, 0) .

Thus, Vn is a semiregenerative process with embedded Markov renewal process

(X,D) = {Xn, dn : n ∈ N}. The process {Xn} is an homogeneous, irreductible and

aperiodic Markov chain with the transition matrix P = {pij}i,j≥0, where:

pij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ +∞
0

(λt)j

j! e−λtf0(t)dt, for i = 0,

∫ +∞
0

(λt)j−i

(j−i)! e
−λtf1(t)dt

+
∫ +∞
0

(λt)j−i+1

(j−i+1)! e
−λtf2(t)dt, for 1 ≤ i < j + 1,

∫ +∞
0

e−λtf2(t)dt for i = j + 1,

0, otherwise,

[9.40]

with:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f0(t) =

∫ +∞
0

λe−λw d
dt (B1(t)B2(t+ w)) dw;

f1(t) =
∫ +∞
0

λe−(λ+μ)w d
dt (B1(t)B2(t+ w)) dw;

f2(t) =
∫ +∞
0

μe−(λ+μ)w d
dt (B1(t)B2(t+ w)) dw.
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Let ψu(s) be the function defined as:

ψu(s) =

∫ +∞

0

ue−uwdw

∫ +∞

0

e−sxdx (B1(x)B2(x+ w)) . [9.41]

Assume that the mean retrial rate in the above tandem queues tends to infinity,

i.e. the customers in the retrial group try continuously to find a position for service

and they become ordinary customers. It means that if μ → +∞, the tandem network

with constant retrials becomes similar to the classical model of two queues in tandem

without intermediate room.

Now, let X(t) denote the number of customers in the first queue of the classical

tandem network at time t and for l = 1, 2, we consider:

ξ
l
(t) =

⎧⎨⎩
0 if the lth server is idle at time t,
1 if the lth server is working at time t,
2 if the lth server is blocked at time t.

The state of the ordinary tandem network [M/G/1 → ./G/1] is completely

described by the process V (t) =
(
X(t), ξ

1
(t), ξ

2
(t)
)
. It is clear that

Xn = (X,D) = {Xn, dn, n ≥ 0} is the embedded Markov renewal process of the

semiregenerative process
(
X(t), ξ

1
(t), ξ

2
(t)
)

at the instant dn of the nth departure

from station 1.

Now, suppose that ρ = lim
μ→+∞ ρ∗ < 1. Then Xn is an irreductible and

homogeneous, aperiodic, positive recurrent Markov chain with transition matrix

P =
{
pij

}
i,j≥0

:

pij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ +∞
0

(λt)j

j! e−λtf0(t)dt, i = 0,

∫ +∞
0

(λt)j−k+1

(j−k+1)! e
−λtdt (B1(t)B2(t)) , i ∈ [i, j + 1],

0, otherwise.

[9.42]

It is easy to show that:

lim
μ→+∞ψλ+μ(s) = ψ(s) =

∫ +∞

0

e−stdt (B1(t)B2(t)) ; lim
μ→+∞ vλ+μ =

ρ

λ
;

lim
μ→+∞ ρ∗ = ρ = −λ

dψ(s)

ds
|s=0= λ

∫ +∞

0

tdt (B1(t)B2(t)) .
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Suppose that the mean retrial rate in the tandem network with constant retrials

tends to infinity. The distance between the two distribution’s interarrivals is measured

by: W =
∫ +∞
0

|f2(t)− d
dt
(B1(t)B2(t))|dt.

Consider the test function v(j) = βj , β > 1, the measure α and the measurable

function h defined by:

α({j}) = αj = p0j , h(i) =

⎧⎨⎩ 1, if i = 0,

0, otherwise.

By using them in theorem 9.1, and based on a series of lemmas demonstrated in a

previous study (Lekadir and Aïssani 2008a), the following theorems can be proved.

THEOREM 9.14.– In the two stations’ tandem network with blocking

[M/G/1 → ./G/1/1], the Markov chain Xn representing the number of customers in

the first station at the instant of the nth departure from the first station is strongly

v-stable with respect to the function v(k) = βk for all β such that 1 < β ≤ β0,

where β0 is given by: β0 = sup
{
β : γ(β) = ψ(λ−λβ)

β < 1
}

.

THEOREM 9.15.– Let π (respectively, π) be the stationary distribution of the Markov

chain Xn (resp. Xn). For β such that 1 < β < β0, we have:

‖π − π‖v ≤ c0(1 + c0)‖Δ‖v
(
1− γ − (1 + c0)‖Δ‖v

)−1
,

where: c0 = ψλ(λβ−λ)−γ
1−γ .

9.3.5.3. Tandem queues with non-preemptive priority

Consider the tandem queueing network [M2/G2/1 → ./G/1/1] with

non-preemptive priority. Customers arrive to the first station according to a Poisson

process. Denote by (θλ) (respectively, (λ)) the arrival rate of the priority

(respectively, the non-priority) customers. The distribution function of the service

times of the priority (respectively, non-priority) customers in the first station is C1(x)
(respectively, C2(x))) and the corresponding density function is c1(x) (respectively,

c2(x)). Moreover, service times in the second station are independent having

distribution function D(x) and density function d(x) common for both priority

classes. Now, let {(Xi(t)}i=1,2 represent the number of customers in station i at the

departure time of the nth customer. The state of the considered model is completely

described by the bidimentional process V (t) =
(
X1(t), X2(t)

)
. Suppose that θ tends

to zero, the part of the tandem queue related to priority customers can be interpreted

as a perturbation of the network [M/G/1 → ./G/1/1] of two stations in tandem

with only non-priority customers. The Markov chain
(
X

(1)
n , X

(2)
n

)
n≥0

has transition
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probabilities Pk,l(i, j, θ) defined by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫∞
0

(
(λθx)i−k+1

(i−k+1)!

)(
(λx)j−l

(j−l)!

)
e−λ(θ+1)xd [C1(x)D(x)] ; if k �= 0, l ≥ 0; i ≥ k − 1, j ≥ l,

∫∞
0

(
(λθx)i

i!

)(
(λx)j−l+1

(j−l+1)!

)
e−λ(1+θ)x

[∫∞
0

λe−λtd (C2(x)D(x+ t)) dt
]
;

if k = 0, l �= 0; i ≥ 0, j ≥ l − 1,

θ
1+θ

∫∞
0

(
(λθx)i

i!

)(
(λx)j

j!

)
e−λ(1+θ)x

[∫∞
0

λe−λtd (C1(x)D(x+ t)) dt
]
+

+ 1
1+θ

∫∞
0

(
(λθx)i

i!

)(
(λx)j

j!

)
e−λ(1+θ)x

[∫∞
0

λe−λtd (C2(x)D(x+ t)) dt
]
;

if k = 0, l = 0; i ≥ 0, j ≥ 0,

0; otherwise.

The transition probabilities Pk,l(i, j, 0) of the Markov chain
(
X

(1)

n , X
(2)

n

)
n≥0

describing the state of the tandem network [M/G/1 → ./G/1/1] are given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫∞
0

(
(λx)j−l

(j−l)!

)
e−λxd [C1(x)D(x)] ; if k �= 0, l ≥ 0; i = k − 1, j ≥ l,

∫∞
0

(
(λx)j−l+1

(j−l+1)!

)
e−λx

[∫∞
0

λe−λtd (C2(x)D(x+ t)) dt
]
; if k = 0, l �= 0; i = 0, j ≥ l − 1,

∫∞
0

(
(λx)j

j!

)
e−λx

[∫∞
0

λe−λtd (C2(x)D(x+ t)) dt
]
; if k = 0, l = 0; i = 0, j ≥ 0,

0; otherwise.

The conditions of the v-stability of the network [M/G/1 → ./G/1/1] are clarified

by the following theorem:

THEOREM 9.16.– Suppose that in the tandem network [M/G/1 → ./G/1/1], the

following the assumptions holds:

– λE(ξ2) < 1 (geometric ergodicity condition), ξi is the random variable

representing the service times of customers with priority i;

– ∃a > 0/E(eaξ2) < ∞ (Cramer condition).
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Then, for all β such that 1 < β < β0 and δ > 1, the Markov chain(
X

(1)

n , X
(2)

n

)
n≥0

is v-strongly stable with respect to the function v(i, j) = δiβj

with , δ = E(exξ1 )
γ2

, where γ2 = E(exξ2 )
β and β0 = sup{β/E(exξ2) < β}.

To prove theorem 9.16, it is sufficient to check the conditions of theorem 9.1 using

the test function:

v : N× N −→ R
∗
+

(i, j) −→ V (i, j) = δi × βj ; with δ > 1, β > 1.

The measure α and the measurable function h are defined by:

α : σ(N)× σ(N) −→ R
+ h : N× N −→ R

({i}, {j}) −→ P0,0(i, j, 0) (k, l) −→ 1{k=0, l=0}.

Note fi(x) =

∫ +∞

0

λe−λt d

dx

(
Ci(x)D(x+ t)

)
dt, i = 1, 2, then:

α
({i}, {j}) =

⎧⎨⎩P0,0(0, j, 0) =

∫ +∞

0

(λx)j

j!
e−λxf2(x)dx, if i = 0;

P0,0(i, j, 0) = 0, if i 	= 0.

From the above theorem, the tandem network [M/G/1 → ./G/1/1] is strongly

v-stable. It means that its characteristics can approximate the tandem network

[M2/G2/1 → ./G/1/1] under the condition that the arrival rate of priority

customers θ tends to zero. To characterize this proximity, it is essential to estimate

the deviation between the stationary distributions of the chains Xn and Xn. To do so,

we first estimate the deviation ‖Δ‖v of the transition operator P.

LEMMA 9.5.–

‖Δ‖v = ‖P−P‖v = sup
k≥0

sup
l≥0

1

δkβl

∑
i≥0

∑
j≥0

δiβj |Δkl(i, j, θ)| ,

with : |Δkl(i, j, θ)| = |Pkl(i, j, θ)− Pkl(i, j, 0)| .

Denote by Θ = sup{E00, E0l, Ekl}. Then:

‖Δ‖v ≤ Θ; [9.43]

Copyright Iste 2021 / File for personal use of Djamil Aïssani only



Strong Stability of Queueing Systems and Networks: a Survey and Perspectives 285

where:

E00 ≤ φ2(λ− λβ) +
1

1 + θ
φ2(λθ + λ− λβ − λδθ)

−
(

1

1 + θ
+ 1

)
φ2(λθ + λ− λβ) +

θ

1 + θ
φ1(λθ + λ− λβ − λθδ);

E0l =
1

β
[ψ2(λ− λβ) + ψ2(λ+ λθ − λβ − λδθ)− 2ψ2(λ+ λθ − λβ)] ;

Ekl =
1

δ
[ψ1(λ+ λθ − λθδ − λβ) + ψ1(λ− λβ)− 2ψ1(λ+ λθ − λβ)] ;

φi(s) =

∫ ∞

0

λe−λtdt

∫ ∞

0

e−sxd[Ci(x)D(x+ t)],

ψi(s) =

∫ ∞

0

e−sxd[Ci(x)D(x)].

The following lemma is also needed to prove the next theorem.

LEMMA 9.6.– Let us consider the constant � defined by � = βP0

(
γ

1−γ

)
, where:

P0 =
1+λψ′

1(0)+θλφ′
1(0)

1+λψ′
1(0)+θλψ′

2(0)−λφ′
1(0)−θλφ′

1(0)
, then ‖π‖v ≤ �.

The upper bound on the norm of the deviation of the stationary measure of the

Markov chains of the tandem queues [M/G/1 → ./M/1/1] and

[M2/G2/1 → ./M/1/1] is given by the following theorem.

THEOREM 9.17.– Let π (respectively, π) be the stationary distribution of [M/G/1 →
./M/1/1] (respectively, [M2/G2/1 → ./M/1/1]). Under the condition Θ < 1−γ

C ,

we have:

‖π − π‖v ≤ Θ� (1 +�)

1− γ − (1 +�)Θ
[9.44]

where γ, Θ, � and P0 are defined previously. 1 < β < β0 where β0 is defined by:

β0 = sup
{
β : ψ2(λβ−λ)

β < 1
}
, 1 < β0 < +∞.

The proof of this theorem is based on theorem 9.2 and uses a series of intermediary

results (for more details, see Lekadir and Aïssani (2011)).

9.3.5.4. Tandem queues with blocking

A two-station tandem network of type [M/M/1/∞ ↔ M/M/1/N ] with

blocking was considered in a previous study (Adel-Aissanou et al. 2012). The infinite
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buffer of the first station is truncated by rejecting arrivals when the queue length

reaches a given level Q. It is expected that such a truncation well approximates the

original model as the truncation level (or size) becomes large. The conditions that

guarantee that the steady-state joint queue length distribution of the original tandem

queueing system is well approximated by the finite buffer truncation are clarified and

error bounds on the stationary queue length distributions are obtained.

9.3.6. Non-parametric perturbation

The above results are concerned with the use of parametric distributions with

known or unknown form. In other works, the authors explore the use of

non-parametric distributions such as kernel density functions fitted from empirical

data. Combining statistics theory results with the strong stability method, one is able

to estimate the impact of the use of such technique.

Note that, in practice, all model parameters are imprecisely known because they

are obtained by means of statistical methods. That is why the strong stability

inequalities will allow us to numerically estimate the uncertainty shown during this

analysis.

In this sense, one aspect which is of interest is when a distribution governing a

queueing system is unknown and we resort to non-parametric methods to estimate its

density function. For instance, if one had real data, then one could apply the kernel

density method to estimate the related density function.

Moreover, it is very often the case that the natural domain of definition of a density

to be estimated is not the whole real line but an interval bounded on one or both

sides. For example, when the data are measurements of positive quantities, it will be

preferable to obtain density estimates that take the value zero for all negative numbers.

Indeed, the strong stability method states that the perturbation must be small in

the sense that the general law G of arrivals (respectively, service times) must be close

but not equal to the Poisson (respectively, exponential) law. Consequently, the density

function of the law G must be close to the exponential density, which is defined on a

bounded support. Thus, the boundary effects must be taken into consideration when

using the kernel density method.

By combining the techniques of correction of boundary effects with the calculation

of the variation distance characterizing the proximity of the quoted systems, one will

be able to check whether this density is sufficiently close to that of the Poisson law (or

that of the exponential law), and then apply the strong stability method to approximate

the characteristics of the real system with those of a classical method (Bareche and

Aïssani 2008, 2011, 2014a,b).

Copyright Iste 2021 / File for personal use of Djamil Aïssani only



Strong Stability of Queueing Systems and Networks: a Survey and Perspectives 287

9.4. Conclusion and further directions

The chapter reviews the evolution of the applications of the strong stability

method to queueing systems and their networks. Many types of queues and networks

have been already studied and both qualitative (stability) and quantitative

(perturbation bounds) are obtained in most cases. However, queueing systems may

contain a large number of parameters and the perturbation of each might have a

completely different effect from the others. Therefore, it is necessary to extend the

stability analysis to those unexplored models and perturbation types, for instance,

perturbation of the collusion probability in the M/M/1 retrial queue with collisions

and transmission errors (modeling the access method in the channel of IEEE 802.11

(Lakaour et al. 2018)), as well as the perturbation of the parameter characterizing the

impatient customers in the M/G/c/k queueing systems with impatient customers

(modeling the Cloud Data Center (Outamazirt et al. 2018)).

The application to general queueing networks might be challenging because of

the high dimension of the embedded Markov chain and the complex dynamics of

those models. Additionally, perturbations in one node result in the loss of the Markov

property in many other (connected) nodes or in the whole network. However,

particular networks (e.g. tandem networks) can be studied.

The theory of strong stability is rich in results. Conditions for the stability and

quantitative estimates might be obtained with various techniques. For instance, one

might use generalized inverses, ergodicity coefficients, eigenvalues, etc. Applying

other strong stability results to queues is essential in order to further sharpen the

perturbation bounds.

Finally, comparison with other methods demonstrates the usefulness of the theory

(see, e.g., Abbas and Heidergott (2010)).
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Preface

Vladimir ANISIMOV1 and Nikolaos LIMNIOS2
1Amgen Inc., London, United Kingdom

2University of Technology of Compiègne, France

Queueing theory is a huge and very rapidly developing branch of science that

originated a long time ago from the pioneering works by Erlang (1909) on the analysis

of the models for telephone communication.

Now, it is growing in various directions including a theoretical analysis of

queueing models and networks of rather complicated structure using rather

sophisticated mathematical models and various types of stochastic processes. It also

includes very wide areas of applications: computing and telecommunication

networks, traffic engineering, mobile telecommunications, etc.

The aim of this book is to reflect the current state-of-the-art and some

contemporary directions of the analysis of queueing models and networks including

some applications.

The first volume of the book consists of 10 chapters written by world-known

experts in these areas. These chapters cover a large spectrum of theoretical and

asymptotic results for various types of queueing models, including different

applications.

Chapter 1 is devoted to the investigation of some theoretical problems for

non-classical queueing models including the analysis of queues with inter-dependent

arrival and service times.

Chapter 2 deals with the analysis of some characteristics of fluid queues including

busy period, congestion analysis and loss probability.

Queueing Theory 1,

coordinated by Vladimir ANISIMOV, Nikolaos LIMNIOS. © ISTE Editions 2020.
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Some contemporary tendencies in the asymptotic analysis of queues are reflected

in the following three survey Chapters 3, 7 and 10.

Chapter 3 includes the results on the average and diffusion approximation of

Markov queueing systems and networks with a small series parameter ε including

applications to some Markov state-dependent queueing models and some other type

of models, in particular, repairman problem, superposition of Markov processes and

semi-Markov type queueing systems.

Diffusion and Gaussian limits for multi-channel queueing networks with rather

general time-dependent input flow and under heavy traffic conditions including some

applications to networks with semi-Markov or renewal type input and Markov service

are considered in Chapter 7.

Chapter 10 is devoted to the asymptotic analysis of time-varying queues using

the large deviations principle for two-time-scale non-homogeneous Markov chains

including the analysis of the queue length process and some characterizations of the

quality and the efficiency of the system.

The analysis of so-called retrial queueing models is reflected in two Chapters – 4

and 8.

In Chapter 4, two models that provide some modifications of “First-Come First-

Served” retrial queueing system introduced by Laszlo Lakatos are investigated.

Chapter 8 gives a review of recent results on single server finite-source retrial

queueing systems with random breakdowns and repairs and collisions of the

customers.

The analysis of transient behavior of the infinite-server queueing models with a

mixed arrival process and Coxian service times and of the Markov-modulated infinite-

server queue with general service times is considered in Chapter 5.

Chapter 6 deals with the applications of fast simulation methods used in queueing

theory to solve some high-dimension combinatorial problems in case the other

approaches fail.

A survey on the analysis of a strong stability method and its applications to

queueing systems and networks and some perspectives are considered in Chapter 9.

The second volume of the book will include the additional chapters devoted to

some other contemporary directions of the analysis of queueing models.

The volumes will be useful for graduate and PhD students, lecturers, and also the

researchers and developers working in mathematical and stochastic modelling and
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various applications in computer and communication networks, science and

engineering in the departments of Mathematics & Applied Mathematics, Statistics, or

Operations Research at universities and in various research and applied centres.

Dedication to Igor Mykolayovych Kovalenko who died shortly after the writing of
this book

Ukrainian and world science is mourning the loss of a brilliant scientist, Professor

Igor Mykolayovych Kovalenko, who died on October 19, 2019, after a difficult fight

with heart disease.

Prof. Igor Kovalenko was a prominent Ukrainian mathematician in the field of

probability theory and its practical applications, a disciple and associate of Boris

Gnedenko and Vladimir Korolyuk. He became famous worldwide for his book

Introduction to Queueing Theory, written together with Gnedenko. He founded a

scientific school in the theory of reliability, queueing theory and cryptography, well

known in Ukraine and all over the world.

Igor Kovalenko was born on March 16, 1935 in Kyiv, Ukraine. After graduating

from the Faculty of Mechanics and Mathematics of Kyiv Taras Shevchenko

University, he worked at the Computing Centre of the Academy of Sciences of

Ukraine. From 1962 till 1971, Kovalenko worked in Moscow, where he headed a

laboratory at the Moscow Institute of Electronic Engineering, and together with other

Gnedenko’s disciples, was the head of the seminar on queueing theory at Moscow

State University. Many leading scientists of the former Soviet Union and foreign

countries attended this seminar.

Based on the model of piecewise linear Markov processes developed by him,

Kovalenko built a mathematical model of a complex defence system reliability and

developed numerical algorithms for its implementation based on the method of a

small parameter.

In 1964, Igor Kovalenko became a Doctor of Technical Sciences. He formulated

the principle of monotonous failures, which, while maintaining high accuracy,

significantly simplified the calculations of system reliability. In 1970, Kovalenko was

awarded the degree of Doctor of Physics and Mathematics for another thesis on the

probabilistic theory of systems of random Boolean equations. Being a doctor twice

over is a very rare practice in the scientific world.

After returning to Kyiv in 1971, Prof. Kovalenko founded and headed the

Department of Mathematical Methods of the Theory of Complex Systems Reliability

at the V.M. Glushkov Institute of Cybernetics. Two areas of research formed the

mainstream of investigations: approximate combined analytical and statistical

methods of reliability analysis, and theoretical and applied cryptography, systems
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and methods for data protection. Under his guidance, the first national standard in the

field of cryptographic information security was developed in Ukraine.

Prof. Kovalenko is the author of 25 monographs and more than 200 articles. He

was elected as an Academician of the National Academy of Sciences of Ukraine in

1978 (Corresponding Member since 1972). He was an extremely hard-working,

honest and sincere person, a competent manager and, thanks to his human qualities,

professional experience and knowledge, highly respected among his colleagues.

Prof. Igor Kovalenko left many disciples, among them there are many professors

and associate professors. All of them preserve in their memory the unforgettable days

of joining the science and independent creativity under the guidance of a Great

Scientist and Teacher, hours of direct communication with a person of great erudition

and high culture.
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